
ESc 101: Fundamentals of Computing

Lecture 16-17

Feb 8 and 10, 2010

Lecture 16-17 () ESc 101 Feb 8 and 10, 2010 1 / 30



Outline

1 More on Functions

2 Variable Scope

3 Good Programming - Bad Programming

Lecture 16-17 () ESc 101 Feb 8 and 10, 2010 2 / 30



Functions in Mathematics

Functions in C represent a algorithm for carrying out a specific task.

Functions in other areas also do the same!

For example, the functions sin, cos, . . ., in mathematics.

Lecture 16-17 () ESc 101 Feb 8 and 10, 2010 3 / 30



Functions in Mathematics

Functions in C represent a algorithm for carrying out a specific task.

Functions in other areas also do the same!

For example, the functions sin, cos, . . ., in mathematics.

Lecture 16-17 () ESc 101 Feb 8 and 10, 2010 3 / 30



Functions in Mathematics

Functions in C represent a algorithm for carrying out a specific task.

Functions in other areas also do the same!

For example, the functions sin, cos, . . ., in mathematics.

Lecture 16-17 () ESc 101 Feb 8 and 10, 2010 3 / 30



The sin Function

The sin function represents the following algorithm:

real sin(real x)

1. Draw a right-angle triangle with the diagonal of length

one (in your favorite unit) and the angle from base

equal to x radians.

2. Measure the perpendicular length (in the same unit).

3. Return the measured value.

Lecture 16-17 () ESc 101 Feb 8 and 10, 2010 4 / 30



Advantages of Using sin Function

Saves Time: We do not have to write the whole algorithm every time we
refer to sin(x).

Saves Space: Writing algorithm every time consumes more space.

More Understandable: Anyone can understand more easily on seeing
to sin(x) than the the algorithm.

No Loss of Information: Since everyone knows that sin corresponds
to the above algorithm, its use is unambiguous.

Lecture 16-17 () ESc 101 Feb 8 and 10, 2010 5 / 30



Advantages of Using sin Function

Saves Time: We do not have to write the whole algorithm every time we
refer to sin(x).

Saves Space: Writing algorithm every time consumes more space.

More Understandable: Anyone can understand more easily on seeing
to sin(x) than the the algorithm.

No Loss of Information: Since everyone knows that sin corresponds
to the above algorithm, its use is unambiguous.

Lecture 16-17 () ESc 101 Feb 8 and 10, 2010 5 / 30



Advantages of Using sin Function

Saves Time: We do not have to write the whole algorithm every time we
refer to sin(x).

Saves Space: Writing algorithm every time consumes more space.

More Understandable: Anyone can understand more easily on seeing
to sin(x) than the the algorithm.

No Loss of Information: Since everyone knows that sin corresponds
to the above algorithm, its use is unambiguous.

Lecture 16-17 () ESc 101 Feb 8 and 10, 2010 5 / 30



Advantages of Using sin Function

Saves Time: We do not have to write the whole algorithm every time we
refer to sin(x).

Saves Space: Writing algorithm every time consumes more space.

More Understandable: Anyone can understand more easily on seeing
to sin(x) than the the algorithm.

No Loss of Information: Since everyone knows that sin corresponds
to the above algorithm, its use is unambiguous.

Lecture 16-17 () ESc 101 Feb 8 and 10, 2010 5 / 30



Functions on Real Life

We implicitly use functions in real life everywhere.

Examples abound: Booting PC, Cooking rice, Reaching Rave Moti,
. . .

Let us expand some of these.

Lecture 16-17 () ESc 101 Feb 8 and 10, 2010 6 / 30



Functions on Real Life

We implicitly use functions in real life everywhere.

Examples abound: Booting PC, Cooking rice, Reaching Rave Moti,
. . .

Let us expand some of these.

Lecture 16-17 () ESc 101 Feb 8 and 10, 2010 6 / 30



Functions on Real Life

We implicitly use functions in real life everywhere.

Examples abound: Booting PC, Cooking rice, Reaching Rave Moti,
. . .

Let us expand some of these.

Lecture 16-17 () ESc 101 Feb 8 and 10, 2010 6 / 30



Reaching Rave Moti

The algorithm represented by this function is something similar to the
following:

reach_Rave_Moti()

1. If it is close to IITK bus time go to bus stop

and catch the bus.

2. Else, go to IITK gate and catch a tempo.

3. Get off at Rawatpur.

4. Walk until railways crossing.

5. Turn right, walk a bit more.

6. Find Rave Moti on the right.

Lecture 16-17 () ESc 101 Feb 8 and 10, 2010 7 / 30



Advantages of Using this Function

In our conversation, we almost never mention the algorithm.

Instead, we just say Go to Rave Moti, essentially referring to the
algorithm.

The only time we mention the algorithm is when someone is new to
Kanpur and does not know where Rave Moti is.

To such a person, we describe it once, and then onwards refer to it by
just the name.

The description first time corresponds to defining the function in C
(both are done once).

Subsequence usage corresponds to calling the function in C.

Lecture 16-17 () ESc 101 Feb 8 and 10, 2010 8 / 30



Advantages of Using this Function

In our conversation, we almost never mention the algorithm.

Instead, we just say Go to Rave Moti, essentially referring to the
algorithm.

The only time we mention the algorithm is when someone is new to
Kanpur and does not know where Rave Moti is.

To such a person, we describe it once, and then onwards refer to it by
just the name.

The description first time corresponds to defining the function in C
(both are done once).

Subsequence usage corresponds to calling the function in C.

Lecture 16-17 () ESc 101 Feb 8 and 10, 2010 8 / 30



Advantages of Using this Function

In our conversation, we almost never mention the algorithm.

Instead, we just say Go to Rave Moti, essentially referring to the
algorithm.

The only time we mention the algorithm is when someone is new to
Kanpur and does not know where Rave Moti is.

To such a person, we describe it once, and then onwards refer to it by
just the name.

The description first time corresponds to defining the function in C
(both are done once).

Subsequence usage corresponds to calling the function in C.

Lecture 16-17 () ESc 101 Feb 8 and 10, 2010 8 / 30



Advantages of Using this Function

In our conversation, we almost never mention the algorithm.

Instead, we just say Go to Rave Moti, essentially referring to the
algorithm.

The only time we mention the algorithm is when someone is new to
Kanpur and does not know where Rave Moti is.

To such a person, we describe it once, and then onwards refer to it by
just the name.

The description first time corresponds to defining the function in C
(both are done once).

Subsequence usage corresponds to calling the function in C.

Lecture 16-17 () ESc 101 Feb 8 and 10, 2010 8 / 30



Advantages of Using this Function

In our conversation, we almost never mention the algorithm.

Instead, we just say Go to Rave Moti, essentially referring to the
algorithm.

The only time we mention the algorithm is when someone is new to
Kanpur and does not know where Rave Moti is.

To such a person, we describe it once, and then onwards refer to it by
just the name.

The description first time corresponds to defining the function in C
(both are done once).

Subsequence usage corresponds to calling the function in C.

Lecture 16-17 () ESc 101 Feb 8 and 10, 2010 8 / 30



Functions with Parameters in Real Life

The Cook Rice function takes raw rice as parameter (the amount and
type of the rice).

Once it is over, the parameter changes to cooked rice (unless there is
an error somewhere).

Again, this corresponds to a C function with parameters whose values
change after execution.

Lecture 16-17 () ESc 101 Feb 8 and 10, 2010 9 / 30



Functions with Parameters in Real Life

The Cook Rice function takes raw rice as parameter (the amount and
type of the rice).

Once it is over, the parameter changes to cooked rice (unless there is
an error somewhere).

Again, this corresponds to a C function with parameters whose values
change after execution.

Lecture 16-17 () ESc 101 Feb 8 and 10, 2010 9 / 30



Functions with Parameters in Real Life

The Cook Rice function takes raw rice as parameter (the amount and
type of the rice).

Once it is over, the parameter changes to cooked rice (unless there is
an error somewhere).

Again, this corresponds to a C function with parameters whose values
change after execution.

Lecture 16-17 () ESc 101 Feb 8 and 10, 2010 9 / 30



Functions in C

Parameters to functions in C do not change value except for arrays
after their execution of over.

This is due to the fact that C follows call-by-value policy.

Lecture 16-17 () ESc 101 Feb 8 and 10, 2010 10 / 30



Functions in C

Parameters to functions in C do not change value except for arrays
after their execution of over.

This is due to the fact that C follows call-by-value policy.

Lecture 16-17 () ESc 101 Feb 8 and 10, 2010 10 / 30



Call by Value Policy

Consider following segment of code:

main()

{

int x;

int y;

x = 10;

y = 20;

swap(x, y);

printf("x = %d, y = %d\n", x, y);

}

Lecture 16-17 () ESc 101 Feb 8 and 10, 2010 11 / 30



Call by Value Policy

void swap(int a, int b)

{

int c;

c = a;

a = b;

b = c;

}

Lecture 16-17 () ESc 101 Feb 8 and 10, 2010 12 / 30



Call by Value Policy

The value of x and y before function f is called is 10 and 20.

These will remain so even after the function is called.

The reason is that when f is called, two new memory locations are
reserved and given names a and b.

In these two locations, the values of x and y are copied.

Once the execution of the function is over, these two memory
locations are discarded.

Their values are not copied back to the memory locations named x

and y!

Lecture 16-17 () ESc 101 Feb 8 and 10, 2010 13 / 30



Call by Value Policy

The value of x and y before function f is called is 10 and 20.

These will remain so even after the function is called.

The reason is that when f is called, two new memory locations are
reserved and given names a and b.

In these two locations, the values of x and y are copied.

Once the execution of the function is over, these two memory
locations are discarded.

Their values are not copied back to the memory locations named x

and y!

Lecture 16-17 () ESc 101 Feb 8 and 10, 2010 13 / 30



Call by Value Policy

The value of x and y before function f is called is 10 and 20.

These will remain so even after the function is called.

The reason is that when f is called, two new memory locations are
reserved and given names a and b.

In these two locations, the values of x and y are copied.

Once the execution of the function is over, these two memory
locations are discarded.

Their values are not copied back to the memory locations named x

and y!

Lecture 16-17 () ESc 101 Feb 8 and 10, 2010 13 / 30



Call by Value Policy

The value of x and y before function f is called is 10 and 20.

These will remain so even after the function is called.

The reason is that when f is called, two new memory locations are
reserved and given names a and b.

In these two locations, the values of x and y are copied.

Once the execution of the function is over, these two memory
locations are discarded.

Their values are not copied back to the memory locations named x

and y!

Lecture 16-17 () ESc 101 Feb 8 and 10, 2010 13 / 30



Call by Value Policy

The value of x and y before function f is called is 10 and 20.

These will remain so even after the function is called.

The reason is that when f is called, two new memory locations are
reserved and given names a and b.

In these two locations, the values of x and y are copied.

Once the execution of the function is over, these two memory
locations are discarded.

Their values are not copied back to the memory locations named x

and y!

Lecture 16-17 () ESc 101 Feb 8 and 10, 2010 13 / 30



Call by Value Policy

The value of x and y before function f is called is 10 and 20.

These will remain so even after the function is called.

The reason is that when f is called, two new memory locations are
reserved and given names a and b.

In these two locations, the values of x and y are copied.

Once the execution of the function is over, these two memory
locations are discarded.

Their values are not copied back to the memory locations named x

and y!

Lecture 16-17 () ESc 101 Feb 8 and 10, 2010 13 / 30



Why are Arrays Treated Different?

They are not treated differently!

But is it better for now to pretend that they are treated differently.

We will see the explanation slightly later.

Lecture 16-17 () ESc 101 Feb 8 and 10, 2010 14 / 30



Why are Arrays Treated Different?

They are not treated differently!

But is it better for now to pretend that they are treated differently.

We will see the explanation slightly later.

Lecture 16-17 () ESc 101 Feb 8 and 10, 2010 14 / 30



Outline

1 More on Functions

2 Variable Scope

3 Good Programming - Bad Programming

Lecture 16-17 () ESc 101 Feb 8 and 10, 2010 15 / 30



Scope of a Variable

In C, each variable has a scope associated with it.

This scope is a block of statements.

The variable is visible only within this block of statements.

Any attempt to access its value outside this block results in an error.

Lecture 16-17 () ESc 101 Feb 8 and 10, 2010 16 / 30



Scope of a Variable

In C, each variable has a scope associated with it.

This scope is a block of statements.

The variable is visible only within this block of statements.

Any attempt to access its value outside this block results in an error.

Lecture 16-17 () ESc 101 Feb 8 and 10, 2010 16 / 30



Scope of a Variable

In C, each variable has a scope associated with it.

This scope is a block of statements.

The variable is visible only within this block of statements.

Any attempt to access its value outside this block results in an error.

Lecture 16-17 () ESc 101 Feb 8 and 10, 2010 16 / 30



Scope of a Variable

In C, each variable has a scope associated with it.

This scope is a block of statements.

The variable is visible only within this block of statements.

Any attempt to access its value outside this block results in an error.

Lecture 16-17 () ESc 101 Feb 8 and 10, 2010 16 / 30



Scope of a Variable

The first statement in the scope is, of course, the statement declaring
the variable.

The last statement in the scope is the last statement of the statement
block in which the variable is defined.

So a variable defined inside a function definition, or declared as
parameter in the definition, is available only until the last statement
of the function.

Lecture 16-17 () ESc 101 Feb 8 and 10, 2010 17 / 30



Scope of a Variable

The first statement in the scope is, of course, the statement declaring
the variable.

The last statement in the scope is the last statement of the statement
block in which the variable is defined.

So a variable defined inside a function definition, or declared as
parameter in the definition, is available only until the last statement
of the function.

Lecture 16-17 () ESc 101 Feb 8 and 10, 2010 17 / 30



Scope of a Variable

The first statement in the scope is, of course, the statement declaring
the variable.

The last statement in the scope is the last statement of the statement
block in which the variable is defined.

So a variable defined inside a function definition, or declared as
parameter in the definition, is available only until the last statement
of the function.

Lecture 16-17 () ESc 101 Feb 8 and 10, 2010 17 / 30



Variable Declaration and Scope

int global = 0;

void foo();

int main()

{

printf("in main global = %d\n", global);

foo(0);

global = 42;

foo(1);

int global = 100;

printf("in main after dec global = %d\n",global);

foo(2);

global=10;

foo(3);

printf("in main after update global = %d\n",global);

}
Lecture 16-17 () ESc 101 Feb 8 and 10, 2010 18 / 30



Variable Declaration and Scope

void foo(int t)

{

int local = 120;

printf("in foo(%d) global = %d, local = %d\n",

t, global, local);

}

Lecture 16-17 () ESc 101 Feb 8 and 10, 2010 19 / 30



Variable scope

A variable comes to life when it is declared.

A variable lives as long as the smallest block that contains its
declartion is active

A variable outside every functions is global and lives forever.

Local variables have precedence over global ones.

Lecture 16-17 () ESc 101 Feb 8 and 10, 2010 20 / 30



Variables in for loop

for (int i = 0; i < 100; i++)

{

/* do something */

}

The variable i is valid only within the for loop.

Lecture 16-17 () ESc 101 Feb 8 and 10, 2010 21 / 30



Variables in for loop

for (int i = 0; i < 100; i++)

{

/* do something */

}

The variable i is valid only within the for loop.

Lecture 16-17 () ESc 101 Feb 8 and 10, 2010 21 / 30



Variables inside function

int foo(int x)

{

/* some stuff */

float local;

foo(bar);

}

The variable is local to the function.

For a new call of foo there is a new variable named local valid for
that call.

Lecture 16-17 () ESc 101 Feb 8 and 10, 2010 22 / 30



Variables inside function

int foo(int x)

{

/* some stuff */

float local;

foo(bar);

}

The variable is local to the function.

For a new call of foo there is a new variable named local valid for
that call.

Lecture 16-17 () ESc 101 Feb 8 and 10, 2010 22 / 30



Variables inside function

int foo(int x)

{

/* some stuff */

float local;

foo(bar);

}

The variable is local to the function.

For a new call of foo there is a new variable named local valid for
that call.

Lecture 16-17 () ESc 101 Feb 8 and 10, 2010 22 / 30



Outline

1 More on Functions

2 Variable Scope

3 Good Programming - Bad Programming

Lecture 16-17 () ESc 101 Feb 8 and 10, 2010 23 / 30



Example of Bad Programming

main()

{

int i,j,k;

int a[100];

for (i=0;i<100;i++) {

scanf("%d",&a[i]);

if (a[i]<0)

break;}

for (j=i-1;j>=0;j--)

printf("%d ",a[j]);

}

Lecture 16-17 () ESc 101 Feb 8 and 10, 2010 24 / 30



So What is Wrong?

main()

{

int i,j,k;

int a[100];

for (i=0;i<100;i++) {

scanf("%d",&a[i]);

if (a[i]<0)

break;}

for (j=i-1;j>=0;j--)

printf("%d ",a[j]);

}

Bad declaration: variable k is never used. Also, variables should be
declared in different lines.

Lecture 16-17 () ESc 101 Feb 8 and 10, 2010 25 / 30



So What is Wrong?

main()

{

int i;

int j;

int a[100];

for (i=0;i<100;i++) {

scanf("%d",&a[i]);

if (a[i]<0)

break;}

for (j=i-1;j>=0;j--)

printf("%d ",a[j]);

}

No indentation!

Lecture 16-17 () ESc 101 Feb 8 and 10, 2010 26 / 30



So What is Wrong?

main()

{

int i;

int j;

int a[100];

for (i=0;i<100;i++) {

scanf("%d",&a[i]);

if (a[i]<0)

break;}

for (j=i-1;j>=0;j--)

printf("%d ",a[j]);

}

Braces should be aligned.

Lecture 16-17 () ESc 101 Feb 8 and 10, 2010 27 / 30



So What is Wrong?

main()

{

int i;

int j;

int a[100];

for (i=0;i<100;i++) {

scanf("%d",&a[i]);

if (a[i]<0)

break;

}

for (j=i-1;j>=0;j--)

printf("%d ",a[j]);

}

Use blanks to separate parts of code.

Lecture 16-17 () ESc 101 Feb 8 and 10, 2010 28 / 30



So What is Wrong?

main()

{

int i;

int j;

int a[100];

for (i = 0; i < 100; i++) {

scanf("%d", &a[i]);

if (a[i] < 0)

break;

}

for (j = i-1; j >= 0; j--)

printf("%d ", a[j]);

}

Insert a blank line between variable declarations and statements, and add
comments!

Lecture 16-17 () ESc 101 Feb 8 and 10, 2010 29 / 30



So What is Wrong?

/* Reads a sequence of positive numbers terminated by a

* negative number, and outputs the sequence in reverse order.

*/

main()

{

int i;

int j;

int a[100]; /* stores the sequence */

for (i = 0; i < 100; i++) { /* read the sequence */

scanf("%d", &a[i]);

if (a[i] < 0) /* end of input */

break;

}

for (j = i-1; j >= 0; j--) /* output in reverse order */

printf("%d ", a[j]);

}
Lecture 16-17 () ESc 101 Feb 8 and 10, 2010 30 / 30


	More on Functions
	Variable Scope
	Good Programming - Bad Programming

